

Session: 3rd AOV Meeting – Canberra – November 2018

Indirect determination of the IVP of VLBI observing systems.

Ryan Ruddick

Reasons and Aim

 The integrity and strength of multi-technique reference frames, such as realisations of the International Terrestrial Reference Frame (ITRF), depend on the precisely measured and expressed local-tie connections at observatories with multiple space geodetic observing systems.

 A reference frame that is accurate to 1 mm with 0.1 mm/yr stability.

Terminology

 Local ties are geometric vectors measured between reference points of different instruments, including the full covariance information in both temporal and spatial domain.

GRP u SM

- In this case the GRP is the system invariant point (IVP) for a standard VLBI telescope is described as the intersection of the azimuth axis with the common perpendicular of the azimuth and elevations axes.
- In this case the SM is the conventional reference point of a standard GNSS antenna is the Antenna Reference Point (ARP).

Determination of Instrument Height

Figure 8: Total station instrument heighting technique, where S_n are staff readings; Z_n are zenith angles (Rueger & Brunner, 1981).

IVP Survey Technique

- Telescope moved through its full range of axis at regular increments for both azimuth and elevations axes.
- Observations are made from two standpoints.
- Targets scribe a circular arc.
- Intersect circles to determine IVP.

Processing Workflow

Axis Software

- Developed at Geoscience Australia
- ftp://ftp.ga.gov.au/geodesy-outgoing/local-tie/axis/
- Rigorous least squares analysis to determine the system IVP.
- Input adjusted targets and full VCV.
- Apply geometrical constraints to determine axes.
 - Targets scribe a prefect circular arc.
 - b. Targets observed multiple times have the same radius.
 - c. Normal vectors are forced to be parallel.
 - d. Circle centres are forced to lie along the same line.

Circles

Circles are defined by 7 parameters:

- Circle centre (3 parameters, dx, dy, dz).
- Unit normal vector (3 parameters, nx, ny, nz).
- Circle radius (1 parameter, r)

Constraint on unit normal vector

Constraint on target radius

Geometrical model

Results

KAT1 to 7375	de	dn	du
2010	97.1717	-59.3554	-4.9592
2014	97.1718	-59.3563	-4.9590
Difference	0.1 mm	0.9 mm	0.2 mm
ITRF2014 Discrepancy	-1.7 mm	-2.3 mm	3.9 mm

Open Questions

- Gravitational sag on the telescope.
- Thermal expansion.
- Influence of the local geoid variations.